Link

Knowledge Distillation

Equation

\[\begin{gathered} \mathcal{D}=\{(x_i,y_i)\}_{i=1}^N \\ \\ \hat{\theta}_T,\hat{W}_T=\underset{\theta_T\in\Theta,W_T\in\mathcal{W}}{\text{argmax}}{ \sum_{i=1}^N{ \log{P(y_i|x_i;\theta_T,W_T,\tau=1)} } } \end{gathered}\] \[\begin{aligned} P(\cdot|x_i;\theta,W,\tau)&=\text{softmax}\Big( \frac{W\cdot{f(x_i;\theta)}}{\tau} \Big) \\ &=\text{softmax}\Big( \frac{W\cdot{h_i}}{\tau} \Big). \end{aligned}\] \[\begin{aligned} \mathcal{L}_\text{KD}(\theta_S,W_S)&=-\sum_{i=1}^N{ \sum_{c\in\mathcal{C}}{ P(\text{y}=c|x_i;\hat{\theta}_T,\hat{W}_T,\tau)\log{ P(\text{y}=c|x_i;\theta_S,W_S,\tau) } } } \\ &\approx-\mathbb{E}_{\text{x}\sim{P(\text{x})}}\Big[ \mathbb{E}_{\text{y}\sim{P(\cdot|\text{x};\hat{\theta}_T,\hat{W}_T,\tau)}}\big[ \log{P(\text{y}|\text{x};\theta_S,W_S,\tau)} \big] \Big] \end{aligned}\] \[\begin{gathered} \mathcal{L}_\text{CE}(\theta_S,W_S)=-\sum_{i=1}^N{ \log{P(y_i|x_i;\theta_S,W_S)} } \end{gathered}\] \[\begin{gathered} \mathcal{L}(\theta_S,W_S)=(1-\alpha)\mathcal{L}_\text{CE}(\theta_S,W_S)+\alpha\mathcal{L}_\text{KD}(\theta_S,W_S) \\ \\ \hat{\theta}_S,\hat{W}_S=\underset{\theta_S\in\Theta,W_S\in\mathcal{W}}{\text{argmin}}\mathcal{L}(\theta_S,W_S) \end{gathered}\]